海角破解版

EasySep? Human Pan-B Cell Enrichment Kit

Immunomagnetic negative isolation of untouched human pan-B cells

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

EasySep? Human Pan-B Cell Enrichment Kit

Immunomagnetic negative isolation of untouched human pan-B cells

Catalog #
(Select a product)
Immunomagnetic negative isolation of untouched human pan-B cells
Request Pricing

Product Advantages


  • Fast, easy-to-use and column-free

  • Up to 99% purity

  • Isolated cells are untouched

What's Included

  • EasySep? Human Pan-B Cell Enrichment Kit (Catalog #19554)
    • EasySep? Human Pan-B Cell Enrichment Cocktail, 1 mL
    • EasySep? Magnetic Particles, 2 x 1 mL
  • RoboSep? Human Pan-B Cell Enrichment Kit (Catalog #19554RF)
    • EasySep? Human Pan-B Cell Enrichment Cocktail, 1 mL
    • EasySep? Magnetic Particles, 2 x 1 mL
    • RoboSep? Buffer (Catalog #20104)
    • RoboSep? Filter Tips (Catalog #20125)

Overview

Easily and efficiently isolate highly purified human B cells, including plasma cells, from fresh or previously frozen human peripheral blood mononuclear cells (PBMCs) or lysed leukapheresis samples by immunomagnetic negative selection, with the EasySep? Human Pan-B Cell Enrichment Kit. Widely used in published research for more than 20 years, EasySep? combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.

In this EasySep? negative selection procedure, unwanted cells are labeled with antibody complexes and magnetic particles. Unwanted cells expressing the following markers are targeted for removal: CD2, CD3, CD14, CD16, CD36, CD42b, CD56, CD66b, CD123, and glyA. The magnetically labeled cells are then separated from the untouched desired B cells by using an EasySep? magnet and simply pouring or pipetting the desired cells into a new tube. Following magnetic cell isolation, the desired B cells are ready for downstream applications such as flow cytometry, culture, or DNA/RNA extraction.

For isolation of only CD43-negative B cells from normal samples, we recommend using EasySep? Human B Cell Enrichment Kit (Catalog #19054).

For enrichment of B cells from peripheral blood or other tissues of patients with B cell leukemia or lymphoma, or with other disease states in which B cells may express CD43, CD36, and/or CD123, we recommend using EasySep? Human B Cell Enrichment Kit II Without CD43 Depletion (Catalog #17963).

Learn more about how immunomagnetic works or how to fully automate immunomagnetic cell isolation with RoboSep?. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.
Magnet Compatibility
? EasySep? Magnet (Catalog #18000)
? “The Big Easy” EasySep? Magnet (Catalog #18001)
? Easy 50 EasySep? Magnet (Catalog #18002)
? RoboSep?-S (Catalog #21000)
Subtype
Cell Isolation Kits
Cell Type
B Cells, Plasma
Species
Human
Sample Source
Leukapheresis, PBMC
Selection Method
Negative
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Immunology

Data Figures

FACS Profile Results With EasySep™ Human Pan-B Cell Enrichment Kit

Figure 1. Typical EasySep? Human Pan-B Cell Enrichment Profile

Starting with nucleated cells, the pan-B cell [Lineage (CD4, CD8, CD14, CD16, CD56) negative, CD19+ and CD19-CD43+] content of the enriched fraction typically ranges from 90 - 99%.

Expansion and Maturation of Human B Cells with ImmunoCult? Human B Cell Expansion Kit

Figure 2. Expansion and Maturation of Human B Cells with ImmunoCult? Human B Cell Expansion Kit

B cells isolated from human peripheral blood mononuclear cells (PBMCs) using EasySep? Human Pan-B Cell Enrichment Kit (Catalog #19554) were seeded at 1 x 10? cells/well in 24-well tissue culture plates with ImmunoCult?-ACF Human B Cell Expansion Supplement and ImmunoCult?-XF B Cell Base Medium, included in the ImmunoCult? Human B Cell Expansion Kit (Catalog #100-0645). The cells were passaged every 3 - 4 days.

(A) Fold expansion of viable cells is shown for n = 12 donors, with bars representing the mean and 95% confidence level (range 38- to 1190-fold at Day 14 ± 1 day).

(B) Expression of CD138 and CD20 was analyzed by flow cytometry at each timepoint (data represent % positive viable cells; mean ± 1 SD). The observed changes indicate maturation of B cells to plasma cells/blasts.

Light Microscopy Image of Cultured Human B Cells

Figure 3. Light Microscopy Image of Cultured Human B Cells

B cells isolated from human PBMCs using EasySep? Human Pan-B Cell Enrichment Kit (Catalog #19554) were seeded at 1 x 10? cells/well in a 24-well tissue culture plate and cultured with the ImmunoCult? Human B Cell Expansion Kit (Catalog #100-0646). The cells were passaged on Day 4 after seeding and imaged at 40X magnification on Day 6.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
19554RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19554
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19554RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19554RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19554RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19554
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19554
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

Which cell separation kits are compatible with the "Easy 50" EASYSEP™ magnet?

At present, the "Easy 50" EasySep™ magnet is only compatible with EasySep™ kits for human cell separation.

T Cells: 19051 (T Cells), 19052 (CD4 T cells), 19157 (Memory CD4 T Cells), 19053 (CD8 T Cells), 19159 (Memory CD8 T Cells - please contact Tech Support)

B Cells: 19054 (B Cells), 19254 (Naïve B cells)

Other Cell Types: 19055 (NK Cells), 19058 (Monocytes without CD16 depletion), 19059 (Monocytes), 19062 (Plasmacytoid DCs), 19251 (pan-DCs)

For HLA Analysis: 19951HLA (T Cells from whole blood), 19954HLA (B Cells from whole blood), 19961HLA (Total lymphocytes from whole blood)

Publications (5)

FLAIRR-Seq: A Method for Single-Molecule Resolution of Near Full-Length Antibody H Chain Repertoires. E. E. Ford et al. Journal of immunology (Baltimore, Md. : 1950) 2023 may

Abstract

Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.
Germinal centre-driven maturation of B cell response to mRNA vaccination. W. Kim et al. Nature 2022 apr

Abstract

Germinal centres (GC) are lymphoid structures in which B cells acquire affinity-enhancing somatic hypermutations (SHM), with surviving clones differentiating into memory B cells (MBCs) and long-lived bone marrow plasma cells1-5 (BMPCs). SARS-CoV-2 mRNA vaccination induces a persistent GC response that lasts for at least six months in humans6-8. The fate of responding GC B cells as well as the functional consequences of such persistence remain unknown. Here, we detected SARS-CoV-2 spike protein-specific MBCs in 42 individuals who had received two doses of the SARS-CoV-2 mRNA vaccine BNT162b2 six month earlier. Spike-specific IgG-secreting BMPCs were detected in 9 out of 11 participants.?Using a combined approach of sequencing the B cell receptors of responding blood plasmablasts and MBCs, lymph node GC B cells?and plasma cells and BMPCs from eight individuals and expression of the corresponding monoclonal antibodies, we tracked the evolution of 1,540 spike-specific B cell clones. On average, early blood spike-specific plasmablasts exhibited the lowest SHM frequencies. By contrast, SHM frequencies of spike-specific GC B cells increased by 3.5-fold within six months after vaccination. Spike-specific MBCs and BMPCs accumulated high levels of SHM, which corresponded with enhanced anti-spike antibody avidity in blood and enhanced affinity as well as neutralization capacity of BMPC-derived monoclonal antibodies. We report how the notable persistence of the GC reaction induced by SARS-CoV-2 mRNA?vaccination in humans culminates in affinity-matured long-term antibody responses that potently neutralize the virus.
B-1b Cells Possess Unique bHLH-Driven P62-Dependent Self-Renewal and Atheroprotection. T. Pattarabanjird et al. Circulation research 2022 apr

Abstract

BACKGROUND B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers, leading to higher IgMOSE production and reduction in atherosclerotic plaque formation. Yet, the mechanism underlying this regulation remains unexplored. METHODS Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. RESULTS Through RNA sequencing, P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 (tumor necrosis factor receptor 6) and activating NF-$\kappa$B (nuclear factor kappa B), leading to subsequent C-MYC (C-myelocytomatosis) upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSE levels and were protected against atherosclerosis. Consistent with murine mechanistic findings, P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing single nucleotide polymorphism (SNP) at rs11574 position in the ID3 gene and directly correlated with plasma IgMOSE levels. CONCLUSIONS This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSE production to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover, analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects, suggesting P62 as a new immunomodulatory target for treating atherosclerosis.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more