ƽ

EasySep™ Mouse Neutrophil Enrichment Kit

Immunomagnetic negative isolation of untouched mouse neutrophils

New format, same high quality! You may notice that your kit contents and packaging look slightly different from previous orders. We are currently updating the format of select EasySep™ Mouse kits to include a Mouse FcR blocker instead of Normal Rat Serum. With this change, all components will now be shipped in a single package, while providing the same cell isolation performance as before.

EasySep™ Mouse Neutrophil Enrichment Kit

Immunomagnetic negative isolation of untouched mouse neutrophils

Catalog #
(Select a product)
Immunomagnetic negative isolation of untouched mouse neutrophils
Request Pricing

Product Advantages


  • Fast, easy-to-use and column-free

  • Up to 93.7% (blood) and 88.7% (bone marrow) purity

  • Isolated cells are untouched

What's Included

  • EasySep™ Mouse Neutrophil Enrichment Kit (Catalog #19762)
    • EasySep™ Mouse Neutrophil Enrichment Cocktail, 0.5 mL
    • EasySep™ Biotin Selection Cocktail, 1 mL
    • EasySep™ Magnetic Particles, 2 x 1 mL
    • EasySep™ Mouse FcR Blocker (Catalog #18730), 0.2 mL
  • Dzdz™ Mouse Neutrophil Enrichment Kit with Filter Tips (Catalog #19762RF)
    • EasySep™ Mouse Neutrophil Enrichment Cocktail, 0.5 mL
    • EasySep™ Biotin Selection Cocktail, 1 mL
    • EasySep™ Magnetic Particles, 2 x 1 mL
    • EasySep™ Mouse FcR Blocker (Catalog #18730), 0.2 mL
    • Dzdz™ Buffer (Catalog #20104)
    • Dzdz™ Filter Tips (Catalog #20125)

Overview

Easily and efficiently isolate highly purified mouse neutrophils (CD11b+Ly6G+) from single-cell suspensions of mouse bone marrow or peripheral blood and other tissue samples by immunomagnetic negative selection, with the EasySep™ Mouse Neutrophil Enrichment Kit. Widely used in published research for more than 20 years, EasySep™ combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.

In this EasySep™ negative selection procedure, unwanted cells are labeled with antibody complexes and magnetic particles. Unwanted cells expressing the following markers are targeted for removal: CD4, CD5, Ter119, CD45R, CD49b, F4/80, CD117, and CD11c. The magnetically labeled cells are then separated from the untouched desired neutrophils by using an EasySep™ magnet and simply pouring or pipetting the desired cells into a new tube. Following magnetic cell isolation, the desired mouse neutrophils are ready for downstream applications such as flow cytometry, cell culture, or cell-based assays.

Learn more about how immunomagnetic EasySep™ technology works or how to fully automate immunomagnetic cell isolation with Dzdz™. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.
Magnet Compatibility
• EasySep™ Magnet (Catalog #18000)
• “The Big Easy” EasySep™ Magnet (Catalog #18001)
• Dzdz™-S (Catalog #21000)
Subtype
Cell Isolation Kits
Cell Type
Granulocytes and Subsets
Species
Mouse
Sample Source
Bone Marrow, Whole Blood
Selection Method
Negative
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Immunology

Data Figures

Typical EasySep™ Mouse Neutrophil Cell Isolation Profile

Figure 1. Typical EasySep™ Mouse Neutrophil Cell Isolation Profile

Starting with mouse bone marrow or mouse blood, the CD11b+Ly6G+ cell content of the enriched fraction is typically 88.2 ± 3.2% for bone marrow and 88.6 ± 4.9% for blood (mean ± SD) using the purple EasySep™ magnet. In the above example, the purities of the start and final enriched fractions are 46.6% and 89.1% (bone marrow) and 20.1% and 91.5% (blood), respectively.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
19762
Lot #
1000138269 or higher
Language
English
Document Type
Product Name
Catalog #
19762
Lot #
1000138268 or lower
Language
English
Document Type
Product Name
Catalog #
19762RF
Lot #
1000138268 or lower
Language
English
Document Type
Product Name
Catalog #
19762RF
Lot #
1000138269 or higher
Language
English
Document Type
Product Name
Catalog #
19762
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19762RF
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Educational Materials (4)

Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.

Publications (28)

Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps. D. Chen et al. FEBS open bio 2024 aug

Abstract

Glucagon-like peptide-1 (GLP-1) regulates glycemic excursions by augmenting insulin production and inhibiting glucagon secretion. Liraglutide, a long-acting GLP-1 analog, can improve glycemic control for treating type 2 diabetes and prevent neutrophil extravasation in inflammation. Here, we explored the role of liraglutide in the development and therapy of murine lung and liver cancers. In this study, liraglutide substantially decreased circulating neutrophil extracellular trap (NET) markers myeloperoxidase, elastase, and dsDNA in Lewis lung cancer (LLC) and Hepa1-6 tumor-bearing mice. Furthermore, liraglutide downregulated NETs and reactive oxygen species (ROS) of neutrophils in the tumor microenvironment. Functionally, in??vitro experiments showed that liraglutide reduced NET formation by inhibiting ROS. In addition, we showed that liraglutide enhanced the anti-tumoral efficiency of programmed cell death-1 (PD-1) inhibition in LLC and Hepa1-6 tumor-bearing C57BL/6 mice. However, the removal of NETs significantly weakened the antitumor efficiency of liraglutide. We further demonstrated that the long-term antitumor CD8+ T cell responses induced by the combination therapy rejected rechallenges by respective tumor cell lines. Taken together, our findings suggest that liraglutide may promote the anti-tumoral efficiency of PD-1 inhibition by reducing NETs in lung and liver cancers.
The voltage-gated potassium channel KV1.3 regulates neutrophil recruitment during inflammation. R. Immler et al. Cardiovascular research 2022 mar

Abstract

Aims: Neutrophil trafficking within the vasculature strongly relies on intracellular calcium signalling. Sustained Ca2+ influx into the cell requires a compensatory efflux of potassium to maintain membrane potential. Here, we aimed to investigate whether the voltage-gated potassium channel KV1.3 regulates neutrophil function during the acute inflammatory process by affecting sustained Ca2+ signalling. Methods and results: Using in vitro assays and electrophysiological techniques, we show that KV1.3 is functionally expressed in human neutrophils regulating sustained store-operated Ca2+ entry through membrane potential stabilizing K+ efflux. Inhibition of KV1.3 on neutrophils by the specific inhibitor 5-(4-Phenoxybutoxy)psoralen (PAP-1) impaired intracellular Ca2+ signalling, thereby preventing cellular spreading, adhesion strengthening, and appropriate crawling under flow conditions in vitro. Using intravital microscopy, we show that pharmacological blockade or genetic deletion of KV1.3 in mice decreased neutrophil adhesion in a blood flow dependent fashion in inflamed cremaster muscle venules. Furthermore, we identified KV1.3 as a critical component for neutrophil extravasation into the inflamed peritoneal cavity. Finally, we also revealed impaired phagocytosis of Escherichia coli particles by neutrophils in the absence of KV1.3. Conclusion: We show that the voltage-gated potassium channel KV1.3 is critical for Ca2+ signalling and neutrophil trafficking during acute inflammatory processes. Our findings do not only provide evidence for a role of KV1.3 for sustained calcium signalling in neutrophils affecting key functions of these cells, they also open up new therapeutic approaches to treat inflammatory disorders characterized by overwhelming neutrophil infiltration.
Cure of syngeneic carcinomas with targeted IL-12 through obligate reprogramming of lymphoid and myeloid immunity. Y. Hong et al. JCI insight 2022 mar

Abstract

Therapeutic IL-12 has demonstrated the ability to reduce local immune suppression in preclinical models, but clinical development has been limited by severe inflammation-related adverse events with systemic administration. Here, we show that potent immunologic tumor control of established syngeneic carcinomas can be achieved by i.t. administration of a tumor-targeted IL-12 antibody fusion protein (NHS-rmIL-12) using sufficiently low doses to avoid systemic toxicity. Single-cell transcriptomic analysis and ex vivo functional assays of NHS-rmIL-12-treated tumors revealed reinvigoration and enhanced proliferation of exhausted CD8+ T lymphocytes, induction of Th1 immunity, and a decrease in Treg number and suppressive capacity. Similarly, myeloid cells transitioned toward inflammatory phenotypes and displayed reduced suppressive capacity. Cell type-specific IL-12 receptor-KO BM chimera studies revealed that therapeutic modulation of both lymphoid and myeloid cells is required for maximum treatment effect and tumor cure. Study of single-cell data sets from human head and neck carcinomas revealed IL-12 receptor expression patterns similar to those observed in murine tumors. These results describing the diverse mechanisms underlying tumor-directed IL-12-induced antitumor immunity provide the preclinical rationale for the clinical study of i.t. NHS-IL-12.
New format, same high quality! You may notice that your kit contents and packaging look slightly different from previous orders. We are currently updating the format of select EasySep™ Mouse kits to include a Mouse FcR blocker instead of Normal Rat Serum. With this change, all components will now be shipped in a single package, while providing the same cell isolation performance as before.