º£½ÇÆƽâ°æ

MethoCultâ„¢ GF H84434

Methylcellulose-based medium with recombinant cytokines

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

MethoCultâ„¢ GF H84434

Methylcellulose-based medium with recombinant cytokines

Catalog #
(Select a product)
Methylcellulose-based medium with recombinant cytokines
Request Pricing

Overview

MethoCultâ„¢ GF H84434 is optimized for the growth and enumeration of hematopoietic progenitor cells in colony-forming unit (CFU) assays of human bone marrow, mobilized peripheral blood, peripheral blood and cord blood samples. H84434 is formulated to support the optimal growth of erythroid progenitor cells (BFU-E and CFU-E), granulocyte-macrophage progenitors (CFU-GM, CFU-G and CFU-M) and multi-potential granulocyte, erythroid, macrophage and megakaryocyte progenitor cells (CFU-GEMM). This formulation is compatible with ³§°Õ·¡²Ñ±¹¾±²õ¾±´Ç²Ôâ„¢ software for automated colony counting.

Browse our Frequently Asked Questions (FAQs) on performing the CFU assay and explore its utility as part of the cell therapy workflow.

Please Note: In light of the new EU Regulation 2017/746 (IVDR) of the European Parliament and of the Council on in vitro diagnostic medical devices, which is expected to become effective in 2022, º£½ÇÆƽâ°æ recently deregistered and removed the CE IVD claims associated with these products, and they are now labeled “For Research Use Onlyâ€. Please note there have been no changes to the form, function and quality assurances associated with these products. For more information please contact the Quality Assurance and Regulatory Department at qaschangenote@stemcell.com.
Contains
• Methylcellulose in Iscove's MDM
• Fetal bovine serum
• Bovine serum albumin
• 2-Mercaptoethanol
• Recombinant human stem cell factor (SCF)
• Recombinant human interleukin 3 (IL-3)
• Recombinant human erythropoietin (EPO)
• Recombinant human granulocyte colony-stimulating factor (G-CSF)
• Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF)
• Supplements
Subtype
Semi-Solid Media, Specialized Media
Cell Type
Hematopoietic Stem and Progenitor Cells
Species
Human
Application
Cell Culture, Colony Assay, Functional Assay, In Vitro Diagnostic
Brand
MethoCult
Area of Interest
Cord Blood Banking, Stem Cell Biology, Transplantation Research

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
84434
Lot #
1000076180 or higher
Language
Multi
Document Type
Product Name
Catalog #
84434
Lot #
1000076180 or higher
Language
English
Document Type
Product Name
Catalog #
84444
Lot #
1000076564 or higher
Language
English
Document Type
Product Name
Catalog #
84444
Lot #
1000076564 or higher
Language
Multi
Document Type
Product Name
Catalog #
84434
Lot #
All
Language
English
Document Type
Product Name
Catalog #
84444
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Why use semi-solid media?

Semi-solid media (methylcellulose-based MethoCultâ„¢ and collagen-based MegaCultâ„¢-C) allow the clonal progeny of a single progenitor cell to remain spatially isolated from other colonies within a culture, so they may be separately identified and counted.

Why use methylcellulose-based media?

Methylcellulose permits better growth of erythroid colonies than other types of semi-solid support systems (eg. agar) while allowing optimal myeloid colony formation. When appropriate cytokines are present, committed progenitor cells of both erythroid and granulocyte/macrophage lineages (CFU-GM, CFU-G, CFU-M) as well as multi-potential progenitor cells (CFU-GEMM), can be assayed simultaneously in the same culture dish.

Is it necessary to add antibiotics to the media?

No, aseptic technique should be sufficient to maintain sterile cultures. However, antibiotics (eg. Penicillin/Streptomycin) or anti-fungals (eg. Amphotericin B) may be added to the methylcellulose medium if desired.

Is there anything I can do if my cultures appear contaminated?

No, once contamination is visible, it is not possible to rescue the cultures by the addition of antibiotics. Bacteria and yeast inhibit colony formation by depleting nutrients or by releasing toxic substances.

Why can't I use a pipette to dispense methylcellulose-based media?

Methylcellulose is a viscous solution that cannot be accurately dispensed using a pipette due to adherence of the medium to the walls of the pipette tip. Blunt-End, 16 Gauge needles (Catalog #28110), in combination with 3 cc Syringes (Catalog #28230) are recommended for accurate dispensing of MethoCultâ„¢.

Can I 'pluck' the colonies for individual analysis?

Yes, colonies can be 'plucked' using a pipette with 200 µL sterile pipette tips or using a glass Pasteur pipette with an elongated tip. Individual colonies should be placed in a volume of 25 - 50 µL of medium, and diluted into suitable culture medium for further culture or analysis.

Why are low adherence dishes so important?

Adherent cells such as fibroblasts can cause inhibition of colony growth and obscure visualization of colonies.

Can MethoCult™ products be used for lymphoid progenitor CFU assays?

Human lymphoid progenitors (B, NK and T) seem to require stromal support for growth therefore cannot be grown in MethoCultâ„¢. Mouse pre-B clonogenic progenitors can be grown in MethoCultâ„¢ M3630 (Catalog #03630).

Is it possible to set up CFU assays in a 24-well plate?

Yes, as long as a plating concentration optimized for the smaller surface area of a well in a 24-well plate (1.9 cm2 as compared to ~9.5 cm2 for a 35 mm dish) is used for these assays. The number of replicate wells required to get an accurate estimation of CFU numbers may also need to be increased.

Can I stain colonies in MethoCultâ„¢ medium?

The cells in individual colonies in MethoCultâ„¢ can be stained, eg., for analysis of morphology or phenotype, after they are plucked from the dish and washed free of methylcellulose. Colonies grown in collagen-based MegaCultâ„¢-C medium can be used for immunohistochemical or enzymatic staining in situ after dehydration and fixation onto glass slides.

Are there differences in colony morphology with serum-free media?

Serum-containing media generally give better overall growth (colonies may appear larger) but there are no large differences in total colony numbers when CFU assays using serum-free media and serum-containing media are compared, provided that identical cytokines are present.

Can MethoCult™ be made with alternate base media?

Yes, this can be done as a 'custom' media order. Please contact techsupport@stemcell.com for more information.

Is there a MethoCult™ formulation suitable for HPP-CFC (high proliferative potential colony forming cell)?

Yes, MethoCultâ„¢ H4535 (Catalog #04535) can be used for the HPP-CFC assay as it does not contain EPO. The culture period is usually 28 days. It is not necessary to feed these cultures as growth factors in the medium are present in excess. As HPP-CFCs can be quite large, overplating can be a problem. It is recommended to plate cells at two or more different concentrations.

Publications (19)

Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Phuc PV et al. Cell and tissue banking 2012 JUN

Abstract

It is known that umbilical cord blood (UCB) is a rich source of stem cells with practical and ethical advantages. Three important types of stem cells which can be harvested from umbilical cord blood and used in disease treatment are hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Since these stem cells have shown enormous potential in regenerative medicine, numerous umbilical cord blood banks have been established. In this study, we examined the ability of banked UCB collected to produce three types of stem cells from the same samples with characteristics of HSCs, MSCs and EPCs. We were able to obtain homogeneous plastic rapidly-adherent cells (with characteristics of MSCs), slowly-adherent (with characteristics of EPCs) and non-adherent cells (with characteristics of HSCs) from the mononuclear cell fractions of cryopreserved UCB. Using a protocol of 48 h supernatant transferring, we successfully isolated MSCs which expressed CD13, CD44 and CD90 while CD34, CD45 and CD133 negative, had typical fibroblast-like shape, and was able to differentiate into adipocytes; EPCs which were CD34, and CD90 positive, CD13, CD44, CD45 and CD133 negative, adherent with cobble-like shape; HSCs which formed colonies when cultured in MethoCult medium.
HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Nguyen T et al. Clinical cancer research : an official journal of the American Association for Cancer Research 2011 MAY

Abstract

PURPOSE: The purpose of this study was to determine whether histone deacetylase (HDAC) inhibitors (HDACI) such as vorinostat or entinostat (SNDX-275) could increase the lethality of the dual Bcr/Abl-Aurora kinase inhibitor KW-2449 in various Bcr/Abl(+) human leukemia cells, including those resistant to imatinib mesylate (IM). EXPERIMENTAL DESIGN: Bcr/Abl(+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) cells, including those resistant to IM (T315I, E255K), were exposed to KW-2449 in the presence or absence of vorinostat or SNDX-275, after which apoptosis and effects on signaling pathways were examined. In vivo studies combining HDACIs and KW2449 were carried out by using a systemic IM-resistant ALL xenograft model. RESULTS: Coadministration of HDACIs synergistically increased KW-2449 lethality in vitro in multiple CML and Ph(+) ALL cell types including human IM resistant cells (e.g., BV-173/E255K and Adult/T315I). Combined treatment resulted in inactivation of Bcr/Abl and downstream targets (e.g., STAT5 and CRKL), as well as increased reactive oxygen species (ROS) generation and DNA damage (γH2A.X). The latter events and cell death were significantly attenuated by free radical scavengers (TBAP). Increased lethality was also observed in primary CD34(+) cells from patients with CML, but not in normal CD34(+) cells. Finally, minimally active vorinostat or SNDX275 doses markedly increased KW2449 antitumor effects and significantly prolonged the survival of murine xenografts bearing IM-resistant ALL cells (BV173/E255K). CONCLUSIONS: HDACIs increase KW-2449 lethality in Bcr/Abl(+) cells in association with inhibition of Bcr/Abl, generation of ROS, and induction of DNA damage. This strategy preferentially targets primary Bcr/Abl(+) hematopoietic cells and exhibits enhanced in vivo activity. Combining KW-2449 with HDACIs warrants attention in IM-resistant Bcr/Abl(+) leukemias.
Sox6 enhances erythroid differentiation in human erythroid progenitors. Cant&ugrave et al. Blood 2011 MAR

Abstract

Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-group-box family of transcription factors, which control cell-fate specification of many cell types. Here, we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34+ cells. Sox6 induced significant erythroid differentiation in both models. K562 cells underwent hemoglobinization and, despite their leukemic origin, died within 9 days after transduction; primary erythroid cultures accelerated their kinetics of erythroid maturation and increased the number of cells that reached the final enucleation step. Searching for direct Sox6 targets, we found SOCS3 (suppressor of cytokine signaling-3), a known mediator of cytokine response. Sox6 was bound in vitro and in vivo to an evolutionarily conserved regulatory SOCS3 element, which induced transcriptional activation. SOCS3 overexpression in K562 cells and in primary erythroid cells recapitulated the growth inhibition induced by Sox6, which demonstrates that SOCS3 is a relevant Sox6 effector.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more