海角破解版

EasySep? Human Myeloid DC Enrichment Kit

Immunomagnetic negative selection of human myeloid DCs

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

EasySep? Human Myeloid DC Enrichment Kit

Immunomagnetic negative selection of human myeloid DCs

Catalog #
(Select a product)
Immunomagnetic negative selection of human myeloid DCs
Request Pricing

Product Advantages


  • Fast, easy-to-use and column-free

  • Up to 90% purity

  • Untouched, viable cells

What's Included

  • EasySep? Human Myeloid DC Enrichment Kit (Catalog #19061)
    • EasySep? Human Myeloid DC Enrichment Cocktail Component A, 2 x 1 mL
    • EasySep? Human DC Enrichment Cocktail Component B, 2 x 1 mL
    • EasySep? D Magnetic Particles, 5 x 1 mL
    • Anti-Human CD32 (Fc gamma RII) Blocker, 0.8 mL
  • RoboSep? Human Myeloid DC Enrichment Kit (Catalog #19061RF)
    • EasySep? Human Myeloid DC Enrichment Cocktail Component A, 2 x 1 mL
    • EasySep? Human DC Enrichment Cocktail Component B, 2 x 1 mL
    • EasySep? D Magnetic Particles, 5 x 1 mL
    • Anti-Human CD32 (Fc gamma RII) Blocker, 0.8 mL
    • RoboSep? Buffer (Catalog #20104) x 2
    • RoboSep? Filter Tips (Catalog #20125) x 2

Overview

Easily and efficiently isolate highly purified human myeloid dendritic cells (mDCs) from fresh human peripheral blood mononuclear cells (PBMCs), buffy coat, or lysed leukapheresis samples by immunomagnetic negative selection, with the EasySep? Human Myeloid DC Enrichment Kit. Widely used in published research for more than 20 years, EasySep? combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.

In this EasySep? negative selection procedure, unwanted cells are labeled with antibody complexes and magnetic particles. The following unwanted cells are targeted for removal: granulocytes, T cells, B cells, monocytes, non-myeloid dendritic cells, NK cells, erythroid cells, and progenitor cells. The magnetically labeled cells are then separated from the untouched desired mDCs by using an EasySep? magnet and simply pouring or pipetting the desired cells into a new tube. Following magnetic cell isolation, the desired mDCs are ready for downstream applications such as flow cytometry, culture, or DNA/RNA extraction.

Learn more about how immunomagnetic works or how to fully automate immunomagnetic cell isolation with RoboSep?. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.
Magnet Compatibility
? EasySep? Magnet (Catalog #18000)
? “The Big Easy” EasySep? Magnet (Catalog #18001)
? RoboSep?-S (Catalog #21000)
Subtype
Cell Isolation Kits
Cell Type
Dendritic Cells
Species
Human
Sample Source
PBMC
Selection Method
Negative
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Immunology

Data Figures

Start: 1.1% Lin-CD11c+HLA-DR+ of total nucleated cells

Figure 1. EasySep? Human Myeloid DC Enrichment Kit

Starting with 0.6 - 1.8% mDCs in fresh peripheral blood nucleated cells, the mDC content of the enriched fraction typically ranges from 50 - 90%* purity based on the mDC phenotype of Lineage (CD3, CD14, CD19, CD20, CD34, CD56)-negative, HLA DR-positive, and CD11c-positive. In the above example, the purities of the start and final enriched fractions are 1.1% and 80.7%, respectively. *If the mDC content of the starting sample is < 1.25%, the mDC content of the enriched fraction may be < 80%.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
19061RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19061
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.

Publications (4)

The Th1/Tfh-like biased responses elicited by the rASP-1 innate adjuvant are dependent on TRIF and Type I IFN receptor pathways. P. J. George et al. Frontiers in immunology 2022

Abstract

Ov-ASP-1 (rASP-1), a parasite-derived protein secreted by the helminth Onchocerca volvulus, is an adjuvant which enhances the potency of the influenza trivalent vaccine (IIV3), even when used with 40-fold less IIV3. This study is aimed to provide a deeper insight into the molecular networks that underline the adjuvanticity of rASP-1. Here we show that rASP-1 stimulates mouse CD11c+ bone marrow-derived dendritic (BMDCs) to secrete elevated levels of IL-12p40, TNF-?, IP-10 and IFN-? in a TRIF-dependent but MyD88-independent manner. rASP-1-activated BMDCs promoted the differentiation of na?ve CD4+ T cells into Th1 cells (IFN-?+) that was TRIF- and type I interferon receptor (IFNAR)-dependent, and into Tfh-like cells (IL21+) and Tfh1 (IFN-?+ IL21+) that were TRIF-, MyD88- and IFNAR-dependent. rASP-1-activated BMDCs promoted the differentiation of na?ve CD4+ T cells into Th17 (IL-17+) cells only when the MyD88 pathway was inhibited. Importantly, rASP-1-activated human blood cDCs expressed upregulated genes that are associated with DC maturation, type I IFN and type II IFN signaling, as well as TLR4-TRIF dependent signaling. These activated cDCs promoted the differentiation of na?ve human CD4+ T cells into Th1, Tfh-like and Th17 cells. Our data thus confirms that the rASP-1 is a potent innate adjuvant that polarizes the adaptive T cell responses to Th1/Tfh1 in both mouse and human DCs. Notably, the rASP-1-adjuvanted IIV3 vaccine elicited protection of mice from a lethal H1N1 infection that is also dependent on the TLR4-TRIF axis and IFNAR signaling pathway, as well as on its ability to induce anti-IIV3 antibody production.
Genomic Multiple Sclerosis Risk Variants Modulate the Expression of the ANKRD55-IL6ST Gene Region in Immature Dendritic Cells. J. Mena et al. Frontiers in immunology 2021

Abstract

Intronic single-nucleotide polymorphisms (SNPs) in the ANKRD55 gene are associated with the risk for multiple sclerosis (MS) and rheumatoid arthritis by genome-wide association studies (GWAS). The risk alleles have been linked to higher expression levels of ANKRD55 and the neighboring IL6ST (gp130) gene in CD4+ T lymphocytes of healthy controls. The biological function of ANKRD55, its role in the immune system, and cellular sources of expression other than lymphocytes remain uncharacterized. Here, we show that monocytes gain capacity to express ANKRD55 during differentiation in immature monocyte-derived dendritic cells (moDCs) in the presence of interleukin (IL)-4/granulocyte-macrophage colony-stimulating factor (GM-CSF). ANKRD55 expression levels are further enhanced by retinoic acid agonist AM580 but downregulated following maturation with interferon (IFN)-$\gamma$ and lipopolysaccharide (LPS). ANKRD55 was detected in the nucleus of moDC in nuclear speckles. We also analyzed the adjacent IL6ST, IL31RA, and SLC38A9 genes. Of note, in healthy controls, MS risk SNP genotype influenced ANKRD55 and IL6ST expression in immature moDC in opposite directions to that in CD4+ T cells. This effect was stronger for a partially correlated SNP, rs13186299, that is located, similar to the main MS risk SNPs, in an ANKRD55 intron. Upon analysis in MS patients, the main GWAS MS risk SNP rs7731626 was associated with ANKRD55 expression levels in CD4+ T cells. MoDC-specific ANKRD55 and IL6ST mRNA levels showed significant differences according to the clinical form of the disease, but, in contrast to healthy controls, were not influenced by genotype. We also measured serum sgp130 levels, which were found to be higher in homozygotes of the protective allele of rs7731626. Our study characterizes ANKRD55 expression in moDC and indicates monocyte-to-dendritic cell (Mo-DC) differentiation as a process potentially influenced by MS risk SNPs.
NOX5 and p22phox are 2 novel regulators of human monocytic differentiation into dendritic cells. Marzaioli V et al. Blood 2017

Abstract

Dendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells and are key cells of the immune system, acquiring different phenotypes in accordance with their localization during the immune response. A subset of inflammatory DCs is derived from circulating monocytes (Mo) and has a key role in inflammation and infection. The pathways controlling Mo-DC differentiation are not fully understood. Our objective was to investigate the possible role of nicotinamide adenine dinucleotide phosphate reduced form oxidases (NOXs) in Mo-DC differentiation. In this study, we revealed that Mo-DC differentiation was inhibited by NOX inhibitors and reactive oxygen species scavengers. We show that the Mo-DC differentiation was dependent on p22phox, and not on gp91phox/NOX2, as shown by the reduced Mo-DC differentiation observed in chronic granulomatous disease patients lacking p22phox. Moreover, we revealed that NOX5 expression was strongly increased during Mo-DC differentiation, but not during Mo-macrophage differentiation. NOX5 was expressed in circulating myeloid DC, and at a lower level in plasmacytoid DC. Interestingly, NOX5 was localized at the outer membrane of the mitochondria and interacted with p22phox in Mo-DC. Selective inhibitors and small interfering RNAs for NOX5 indicated that NOX5 controlled Mo-DC differentiation by regulating the JAK/STAT/MAPK and NFκB pathways. These data demonstrate that the NOX5-p22phox complex drives Mo-DC differentiation, and thus could be critical for immunity and inflammation.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more