海角破解版

EasySep? Human Memory CD4+ T Cell Enrichment Kit

Immunomagnetic negative isolation of untouched human memory CD4+ T cells

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

EasySep? Human Memory CD4+ T Cell Enrichment Kit

Immunomagnetic negative isolation of untouched human memory CD4+ T cells

Catalog #
(Select a product)
Immunomagnetic negative isolation of untouched human memory CD4+ T cells
Request Pricing

Product Advantages


  • Fast, easy-to-use and column-free

  • Up to 98% purity

  • Untouched, viable cells

What's Included

  • EasySep? Human Memory CD4+ T Cell Enrichment Kit (Catalog #19157)
    • EasySep? Human Memory CD4+ T Cell Enrichment Cocktail, 1 mL
    • EasySep? D Magnetic Particles, 2 x 1 mL
  • RoboSep? Human Memory CD4 T Cell Enrichment Kit with Filter Tips (Catalog #19157RF)
    • EasySep? Human Memory CD4+ T Cell Enrichment Cocktail, 1 mL
    • EasySep? D Magnetic Particles, 2 x 1 mL
    • RoboSep? Buffer (Catalog #20104)
    • RoboSep? Filter Tips (Catalog #20125)

Overview

Easily and efficiently isolate highly purified human memory CD4+ T cells (CD4+CD45RA-CD45RO+) from fresh or previously frozen human peripheral blood mononuclear cell (PBMC) samples by immunomagnetic negative selection, with the EasySep? Human Memory CD4+ T Cell Enrichment Kit. Widely used in published research for more than 20 years, EasySep? combines the specificity of monoclonal antibodies with the simplicity of a column-free magnetic system.

In this EasySep? negative selection procedure, unwanted cells are labeled with antibody complexes and magnetic particles. Unwanted cells expressing the following markers are targeted for removal: CD8, CD14, CD16, CD19, CD20, CD36, CD45RA, CD56, CD123, TCRγ/δ, and glyA. The magnetically labeled cells are then separated from the untouched desired memory CD4+ T cells by using an EasySep? magnet and simply pouring or pipetting the desired cells into a new tube. Following magnetic cell isolation , the desired memory CD4+ T cells are ready for downstream applications such as e.g. flow cytometry, culture, or DNA/RNA extraction.

Learn more about how immunomagnetic works or how to fully automate immunomagnetic cell isolation with RoboSep?. Alternatively, choose ready-to-use, ethically sourced, primary Human Peripheral Blood CD4+CD45RO+ T Cells, Frozen isolated with EasySep? Human Memory CD4+ T Cell Enrichment Kit. Explore additional products optimized for your workflow, including culture media, supplements, antibodies, and more.
Magnet Compatibility
? EasySep? Magnet (Catalog #18000)
? “The Big Easy” EasySep? Magnet (Catalog #18001)
? EasyPlate? EasySep? Magnet (Catalog 18102)
? Easy 50 EasySep? Magnet (Catalog #18002)
? RoboSep?-S (Catalog #21000)
Subtype
Cell Isolation Kits
Cell Type
T Cells, T Cells, CD4+
Species
Human
Sample Source
PBMC
Selection Method
Negative
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Immunology

Data Figures

Typical Enrichment Profile For EasySep™ Human Memory CD4+ T Cell Enrichment Kit

Figure 1. Typical Enrichment Profile For EasySep™ Human Memory CD4+ T Cell Enrichment Kit

Starting with previously frozen mononuclear cells, the memory CD4+ T cell content of the enriched fraction typically ranges from 86% - 98%.

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Product Name
Catalog #
19157RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19157
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19157RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19157RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19157RF
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19157
Lot #
All
Language
English
Document Type
Product Name
Catalog #
19157
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.

Publications (5)

The human liver microenvironment shapes the homing and function of CD4+ T-cell populations. B. G. Wiggins et al. Gut 2022 jul

Abstract

OBJECTIVE Tissue-resident memory T cells (TRM) are vital immune sentinels that provide protective immunity. While hepatic CD8+ TRM have been well described, little is known about the location, phenotype and function of CD4+ TRM. DESIGN We used multiparametric flow cytometry, histological assessment and novel human tissue coculture systems to interrogate the ex vivo phenotype, function and generation of the intrahepatic CD4+ T-cell compartment. We also used leukocytes isolated from human leukocyte antigen (HLA)-disparate liver allografts to assess long-term retention. RESULTS Hepatic CD4+ T cells were delineated into three distinct populations based on CD69 expression: CD69-, CD69INT and CD69HI. CD69HICD4+ cells were identified as tissue-resident CD4+ T cells on the basis of their exclusion from the circulation, phenotypical profile (CXCR6+CD49a+S1PR1-PD-1+) and long-term persistence within the pool of donor-derived leukcoocytes in HLA-disparate liver allografts. CD69HICD4+ T cells produced robust type 1 polyfunctional cytokine responses on stimulation. Conversely, CD69INTCD4+ T cells represented a more heterogenous population containing cells with a more activated phenotype, a distinct chemokine receptor profile (CX3CR1+CXCR3+CXCR1+) and a bias towards interleukin-4 production. While CD69INTCD4+ T cells could be found in the circulation and lymph nodes, these cells also formed part of the long-term resident pool, persisting in HLA-mismatched allografts. Notably, frequencies of CD69INTCD4+ T cells correlated with necroinflammatory scores in chronic hepatitis B infection. Finally, we demonstrated that interaction with hepatic epithelia was sufficient to generate CD69INTCD4+ T cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HICD4+ T cells. CONCLUSIONS High and intermediate CD69 expressions mark human hepatic CD4+ TRM and a novel functionally distinct recirculating population, respectively, both shaped by the liver microenvironment to achieve diverse immunosurveillance.
Stress hormone signalling inhibits Th1 polarization in a CD4 T-cell-intrinsic manner via mTORC1 and the circadian gene PER1. C. M. Capelle et al. Immunology 2022 apr

Abstract

Stress hormones are believed to skew the CD4?T-cell differentiation towards a Th2 response via a T-cell-extrinsic mechanism. Using isolated primary human na{\{i}}ve and memory CD4?T cells here we show that both adrenergic- and glucocorticoid-mediated stress signalling pathways play a CD4 na{\"{i}}ve T-cell-intrinsic role in regulating the Th1/Th2 differentiation balance. Both stress hormones reduced the Th1 programme and cytokine production by inhibiting mTORC1?signalling via two parallel mechanisms. Stress hormone signalling inhibited mTORC1 in na{\"{i}}ve CD4?T cells (1) by affecting the PI3K/AKT pathway and (2) by regulating the expression of the circadian rhythm gene period circadian regulator 1 (PER1). Both stress hormones induced the expression of PER1 which inhibited mTORC1?signalling thus reducing Th1 differentiation. This previously unrecognized cell-autonomous mechanism connects stress hormone signalling with CD4?T-cell differentiation via mTORC1 and a specific circadian clock gene namely PER1."
PD-1 blockade potentiates HIV latency reversal ex vivo in CD4+ T cells from ART-suppressed individuals. R. Fromentin et al. Nature communications 2019 feb

Abstract

HIV persists in latently infected CD4+ T cells during antiretroviral therapy (ART). Immune checkpoint molecules, including PD-1, are preferentially expressed at the surface of persistently infected cells. However, whether PD-1 plays a functional role in HIV latency and reservoir persistence remains unknown. Using CD4+ T cells from HIV-infected individuals, we show that the engagement of PD-1 inhibits viral production at the transcriptional level and abrogates T-cell receptor (TCR)-induced HIV reactivation in latently infected cells. Conversely, PD-1 blockade with the monoclonal antibody pembrolizumab enhances HIV production in combination with the latency reversing agent bryostatin without increasing T cell activation. Our results suggest that the administration of immune checkpoint blockers to HIV-infected individuals on ART may facilitate latency disruption.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more