Showing 1 - 12 of 125 results for "ipsc"
1 Product
- ReferenceY. Lin et al. (APR 2018) Scientific reports 8 1 5907
Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs.
Nonhuman primate (NHP) models are more predictive than rodent models for developing induced pluripotent stem cell (iPSC)-based cell therapy, but robust and reproducible NHP iPSC-cardiomyocyte differentiation protocols are lacking for cardiomyopathies research. We developed a method to differentiate integration-free rhesus macaque iPSCs (RhiPSCs) into cardiomyocytes with {\textgreater}85{\%} purity in 10 days, using fully chemically defined conditions. To enable visualization of intracellular calcium flux in beating cardiomyocytes, we used CRISPR/Cas9 to stably knock-in genetically encoded calcium indicators at the rhesus AAVS1 safe harbor locus. Rhesus cardiomyocytes derived by our stepwise differentiation method express signature cardiac markers and show normal electrochemical coupling. They are responsive to cardiorelevant drugs and can be successfully engrafted in a mouse myocardial infarction model. Our approach provides a powerful tool for generation of NHP iPSC-derived cardiomyocytes amenable to utilization in basic research and preclinical studies, including in vivo tissue regeneration models and drug screening.Catalog #: Product Name: 09600 StemSpan™ SFEM 07930 CryoStor® CS10 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceYokota M et al. (JAN 2017) Cell death & disease 8 1 e2551
Mitochondrial respiratory dysfunction disturbs neuronal and cardiac lineage commitment of human iPSCs.
Mitochondrial diseases are genetically heterogeneous and present a broad clinical spectrum among patients; in most cases, genetic determinants of mitochondrial diseases are heteroplasmic mitochondrial DNA (mtDNA) mutations. However, it is uncertain whether and how heteroplasmic mtDNA mutations affect particular cellular fate-determination processes, which are closely associated with the cell-type-specific pathophysiology of mitochondrial diseases. In this study, we established two isogenic induced pluripotent stem cell (iPSC) lines each carrying different proportions of a heteroplasmic m.3243A>G mutation from the same patient; one exhibited apparently normal and the other showed most likely impaired mitochondrial respiratory function. Low proportions of m.3243A>G exhibited no apparent molecular pathogenic influence on directed differentiation into neurons and cardiomyocytes, whereas high proportions of m.3243A>G showed both induced neuronal cell death and inhibited cardiac lineage commitment. Such neuronal and cardiac maturation defects were also confirmed using another patient-derived iPSC line carrying quite high proportion of m.3243A>G. In conclusion, mitochondrial respiratory dysfunction strongly inhibits maturation and survival of iPSC-derived neurons and cardiomyocytes; our presenting data also suggest that appropriate mitochondrial maturation actually contributes to cellular fate-determination processes during development.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 - ReferenceTomov ML et al. (DEC 2016) Scientific Reports 6 1 37637
Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs
The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics, epigenomics, and bioinformatics that inform on genetic pathways directing tissue development and function. When possible, population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American, Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype, verified teratoma formation, pluripotency biomarkers, and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural, pancreatic, and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential.Catalog #: Product Name: 05835 STEMdiffâ„¢ Neural Induction Medium 08581 STEMdiffâ„¢ SMADi Neural Induction Kit Catalog #: 05835 Product Name: STEMdiffâ„¢ Neural Induction Medium Catalog #: 08581 Product Name: STEMdiffâ„¢ SMADi Neural Induction Kit - ReferenceE. Gabriel et al. (JAN 2016) Stem cell reports 7 4 678--692
Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs.
Mitochondria are critical to neurogenesis, but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Following directed differentiation of hiPSCs to DA neurons, mitochondria in these neurons exhibit pronounced changes during differentiation, including mature neurophysiology characterization and functional synaptic network formation. Inhibition of mitochondrial respiratory chains via application of complex IV inhibitor KCN (potassium cyanide) or complex I inhibitor rotenone restricted neurogenesis of DA neurons. These results demonstrated the direct importance of mitochondrial development and bioenergetics in DA neuronal differentiation. Our study also provides a neurophysiologic model of mitochondrial involvement in neurogenesis, which will enhance our understanding of the role of mitochondrial dysfunctions in neurodegenerative diseases.Catalog #: Product Name: 05835 STEMdiffâ„¢ Neural Induction Medium 08581 STEMdiffâ„¢ SMADi Neural Induction Kit 05832 STEMdiffâ„¢ Neural Rosette Selection Reagent 05833 STEMdiffâ„¢ Neural Progenitor Medium 05790 BrainPhysâ„¢ Neuronal Medium 05792 BrainPhysâ„¢ Neuronal Medium and SM1 Kit 05794 BrainPhysâ„¢ Primary Neuron Kit 05795 BrainPhysâ„¢ hPSC Neuron Kit 05793 BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit Catalog #: 05835 Product Name: STEMdiffâ„¢ Neural Induction Medium Catalog #: 08581 Product Name: STEMdiffâ„¢ SMADi Neural Induction Kit Catalog #: 05832 Product Name: STEMdiffâ„¢ Neural Rosette Selection Reagent Catalog #: 05833 Product Name: STEMdiffâ„¢ Neural Progenitor Medium Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium Catalog #: 05792 Product Name: BrainPhysâ„¢ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhysâ„¢ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhysâ„¢ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit - ReferenceQu Y et al. (AUG 2016) Scientific reports 6 32007
Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs.
Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair, eye, and the mammary gland. In this study, we validate a protocol that utilizes BMP4 and the $$-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGF$$ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGF$$-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development, studying disease pathogenesis, and development of regenerative medicine approaches.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 - ReferenceMandegar MA et al. (APR 2016) Cell Stem Cell 18 4 541--553
CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs
Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 07920 ´¡°ä°ä±«°Õ´¡³§·¡â„¢ Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 07920 Product Name: ´¡°ä°ä±«°Õ´¡³§·¡â„¢ - ReferenceLaugsch M et al. (APR 2016) Molecular therapy : the journal of the American Society of Gene Therapy 24 4 812--822
Functional Restoration of gp91phox-Oxidase Activity by BAC Transgenesis and Gene Targeting in X-linked Chronic Granulomatous Disease iPSCs.
Chronic granulomatous disease (CGD) is an inherited immunodeficiency, caused by the inability of neutrophils to produce functional NADPH oxidase required for fighting microbial infections. The X-linked form of CGD (X-CGD), which is due to mutations in the CYBB (gp91phox) gene, a component of NADPH oxidase, accounts for about two-thirds of CGD cases. We derived induced pluripotent stem cells (iPSCs) from X-CGD patient keratinocytes using a Flp recombinase excisable lentiviral reprogramming vector. For restoring gp91phox function, we applied two strategies: transposon-mediated bacterial artificial chromosome (BAC) transgenesis and gene targeting using vectors with a fixed 5' homology arm (HA) of 8 kb and 3'HA varying in size from 30 to 80 kb. High efficiency of homologous recombination (up to 22%) was observed with increased size of the 3'HA. Both, BAC transgenesis and gene targeting resulted in functional restoration of the gp91phox measured by an oxidase activity assay in X-CGD iPSCs differentiated into the myeloid lineage. In conclusion, we delivered an important milestone towards the use of genetically corrected autologous cells for the treatment of X-CGD and monogenic diseases in general.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 - ReferenceZhao Q et al. (JAN 2015) Proceedings of the National Academy of Sciences of the United States of America 112 2 530--535
MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs.
Mesenchymal stem or stromal cells (MSCs) have many potential therapeutic applications including therapies for cancers and tissue damages caused by cancers or radical cancer treatments. However, tissue-derived MSCs such as bone marrow MSCs (BM-MSCs) may promote cancer progression and have considerable donor variations and limited expandability. These issues hinder the potential applications of MSCs, especially those in cancer patients. To circumvent these issues, we derived MSCs from transgene-free human induced pluripotent stem cells (iPSCs) efficiently with a modified protocol that eliminated the need of flow cytometric sorting. Our iPSC-derived MSCs were readily expandable, but still underwent senescence after prolonged culture and did not form teratomas. These iPSC-derived MSCs homed to cancers with efficiencies similar to BM-MSCs but were much less prone than BM-MSCs to promote the epithelial-mesenchymal transition, invasion, stemness, and growth of cancer cells. The observations were probably explained by the much lower expression of receptors for interleukin-1 and TGFβ, downstream protumor factors, and hyaluronan and its cofactor TSG6, which all contribute to the protumor effects of BM-MSCs. The data suggest that iPSC-derived MSCs prepared with the modified protocol are a safer and better alternative to BM-MSCs for therapeutic applications in cancer patients. The protocol is scalable and can be used to prepare the large number of cells required for off-the-shelf" therapies and bioengineering applications." View PublicationCatalog #: Product Name: 01701 ALDEFLUORâ„¢ Assay Buffer 85850 ³¾°Õ±ð³§¸éâ„¢1 01700 ALDEFLUORâ„¢ Kit 01705 ALDEFLUORâ„¢ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUORâ„¢ Assay Buffer Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 01700 Product Name: ALDEFLUORâ„¢ Kit Catalog #: 01705 Product Name: ALDEFLUORâ„¢ DEAB Reagent - ReferenceMou H et al. (APR 2012) Cell stem cell 10 4 385--397
Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 - ReferenceM. R. Hildebrandt et al. (dec 2019) Stem cell reports 13 6 1126--1141
Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation.
Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons, cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids, T lymphocytes, and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly, nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac, neurological, or other disease associations. Overall, PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling, and variant-preferred healthy control lines were identified for specific disease settings.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 05010 STEMdiffâ„¢ Ventricular Cardiomyocyte Differentiation Kit Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05010 Product Name: STEMdiffâ„¢ Ventricular Cardiomyocyte Differentiation Kit - ReferenceM. S. Fernandopulle et al. (JUN 2018) Current protocols in cell biology 79 1 e51
Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons.
Accurate modeling of human neuronal cell biology has been a long-standing challenge. However, methods to differentiate human induced pluripotent stem cells (iPSCs) to neurons have recently provided experimentally tractable cell models. Numerous methods that use small molecules to direct iPSCs into neuronal lineages have arisen in recent years. Unfortunately, these methods entail numerous challenges, including poor efficiency, variable cell type heterogeneity, and lengthy, expensive differentiation procedures. We recently developed a new method to generate stable transgenic lines of human iPSCs with doxycycline-inducible transcription factors at safe-harbor loci. Using a simple two-step protocol, these lines can be inducibly differentiated into either cortical (i3 Neurons) or lower motor neurons (i3 LMN) in a rapid, efficient, and scalable manner (Wang et al., 2017). In this manuscript, we describe a set of protocols to assist investigators in the culture and genetic engineering of iPSC lines to enable transcription factor-mediated differentiation of iPSCs into i3 Neurons or i3 LMNs, and we present neuronal culture conditions for various experimental applications. {\textcopyright} 2018 by John Wiley & Sons, Inc.Catalog #: Product Name: 07920 ´¡°ä°ä±«°Õ´¡³§·¡â„¢ 05790 BrainPhysâ„¢ Neuronal Medium 05792 BrainPhysâ„¢ Neuronal Medium and SM1 Kit 05794 BrainPhysâ„¢ Primary Neuron Kit 05795 BrainPhysâ„¢ hPSC Neuron Kit 05793 BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit Catalog #: 07920 Product Name: ´¡°ä°ä±«°Õ´¡³§·¡â„¢ Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium Catalog #: 05792 Product Name: BrainPhysâ„¢ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhysâ„¢ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhysâ„¢ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit - ReferenceLee YK et al. ( 2016) 1353 191--213
Generation and characterization of patient-specific iPSC model for cardiovascular disease
Advances in differentiation of cardiomyocytes from human induced pluripotent stem cell (hiPSC) were emerged as a tool for modeling of cardiovascular disease that recapitulates the phenotype for the purpose of drug screening, biomarker discovery, and testing of single-nucleotide polymorphism (SNP) as a modifier for disease stratification. Here, we describe the (1) retroviral reprogramming strategies in the generation of human iPSC, (2) methodology in characterization of iPSC in order to identify the stem cell clones with the best quality, and (3) protocol of cardiac differentiation by modulation of Wnt signaling and $\$-catenin pathway.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1
1 Product
Shop By
Filter Results
- Resource Type
-
- Reference 125 items
- Area of Interest
-
- Cancer 2 items
- Cell Line Development 3 items
- Drug Discovery and Toxicity Testing 1 item
- Neuroscience 20 items
- Stem Cell Biology 95 items
- Brand
-
- ALDEFLUOR 1 item
- AggreWell 4 items
- BrainPhys 6 items
- CryoStor 4 items
- EasySep 2 items
- MesenCult 1 item
- MethoCult 2 items
- RSeT 1 item
- STEMdiff 13 items
- SepMate 2 items
- StemSpan 3 items
- TeSR 99 items
- mFreSR 1 item
- Cell Type
-
- Cancer Cells and Cell Lines 1 item
- Cardiomyocytes, PSC-Derived 1 item
- Hematopoietic Stem and Progenitor Cells 2 items
- Mesenchymal Stem and Progenitor Cells 3 items
- Monocytes 1 item
- Neural Cells, PSC-Derived 4 items
- Neural Stem and Progenitor Cells 15 items
- Neurons 14 items
- Pluripotent Stem Cells 98 items