Showing 49 - 60 of 207 results for "ipsc"
1 Product
- ReferenceC. Kinnear et al. (Apr 2024) Cell Reports Medicine 5 5
Myosin inhibitor reverses hypertrophic cardiomyopathy in genotypically diverse pediatric iPSC-cardiomyocytes to mirror variant correction
Pathogenic variants in MYH7 and MYBPC3 account for the majority of hypertrophic cardiomyopathy (HCM). Targeted drugs like myosin ATPase inhibitors have not been evaluated in children. We generate patient and variant-corrected iPSC-cardiomyocytes (CMs) from pediatric HCM patients harboring single variants in MYH7 ( V606M ; R453C ), MYBPC3 ( G148R ) or digenic variants ( MYBPC3 P955fs , TNNI3 A157V ). We also generate CMs harboring MYBPC3 mono- and biallelic variants using CRISPR editing of a healthy control. Compared with isogenic and healthy controls, variant-positive CMs show sarcomere disorganization, higher contractility, calcium transients, and ATPase activity. However, only MYH7 and biallelic MYBPC3 variant-positive CMs show stronger myosin-actin binding. Targeted myosin ATPase inhibitors show complete rescue of the phenotype in variant-positive CMs and in cardiac Biowires to mirror isogenic controls. The response is superior to verapamil or metoprolol. Myosin inhibitors can be effective in genotypically diverse HCM highlighting the need for myosin inhibitor drug trials in pediatric HCM.Catalog #: Product Name: 05025 STEMdiff™ Cardiomyocyte Dissociation Kit Catalog #: 05025 Product Name: STEMdiff™ Cardiomyocyte Dissociation Kit - ReferenceG. Parodi et al. (Feb 2024) Frontiers in Molecular Neuroscience 17 121
Electrical and chemical modulation of homogeneous and heterogeneous human-iPSCs-derived neuronal networks on high density arrays
The delicate “Excitatory/Inhibitory balance” between neurons holds significance in neurodegenerative and neurodevelopmental diseases. With the ultimate goal of creating a faithful in vitro model of the human brain, in this study, we investigated the critical factor of heterogeneity, focusing on the interplay between excitatory glutamatergic (E) and inhibitory GABAergic (I) neurons in neural networks. We used high-density Micro-Electrode Arrays (MEA) with 2304 recording electrodes to investigate two neuronal culture configurations: 100% glutamatergic (100E) and 75% glutamatergic / 25% GABAergic (75E25I) neurons. This allowed us to comprehensively characterize the spontaneous electrophysiological activity exhibited by mature cultures at 56 Days in vitro , a time point in which the GABA shift has already occurred. We explored the impact of heterogeneity also through electrical stimulation, revealing that the 100E configuration responded reliably, while the 75E25I required more parameter tuning for improved responses. Chemical stimulation with BIC showed an increase in terms of firing and bursting activity only in the 75E25I condition, while APV and CNQX induced significant alterations on both dynamics and functional connectivity. Our findings advance understanding of diverse neuron interactions and their role in network activity, offering insights for potential therapeutic interventions in neurological conditions. Overall, this work contributes to the development of a valuable human-based in vitro system for studying physiological and pathological conditions, emphasizing the pivotal role of neuron diversity in neural network dynamics.Catalog #: Product Name: 05872 ¸é±đł˘±đł§¸é™ Catalog #: 05872 Product Name: ¸é±đł˘±đł§¸é™ - ReferenceT. D. Nguyen et al. (Feb 2024) Stem Cells Translational Medicine 13 4
Label-Free and High-Throughput Removal of Residual Undifferentiated Cells From iPSC-Derived Spinal Cord Progenitor Cells
The transplantation of spinal cord progenitor cells (SCPCs) derived from human-induced pluripotent stem cells (iPSCs) has beneficial effects in treating spinal cord injury (SCI). However, the presence of residual undifferentiated iPSCs among their differentiated progeny poses a high risk as these cells can develop teratomas or other types of tumors post-transplantation. Despite the need to remove these residual undifferentiated iPSCs, no specific surface markers can identify them for subsequent removal. By profiling the size of SCPCs after a 10-day differentiation process, we found that the large-sized group contains significantly more cells expressing pluripotent markers. In this study, we used a sized-based, label-free separation using an inertial microfluidic-based device to remove tumor-risk cells. The device can reduce the number of undifferentiated cells from an SCPC population with high throughput (ie, >3 million cells/minute) without affecting cell viability and functions. The sorted cells were verified with immunofluorescence staining, flow cytometry analysis, and colony culture assay. We demonstrated the capabilities of our technology to reduce the percentage of OCT4-positive cells. Our technology has great potential for the “downstream processing” of cell manufacturing workflow, ensuring better quality and safety of transplanted cells.Catalog #: Product Name: 05872 ¸é±đł˘±đł§¸é™ Catalog #: 05872 Product Name: ¸é±đł˘±đł§¸é™ - ReferenceS. L. Calzi et al. (Aug 2025) Cells 14 17
Targeting Diabetic Retinopathy with Human iPSC-Derived Vascular Reparative Cells in a Type 2 Diabetes Model
Purpose: To investigate the therapeutic potential of inducible pluripotent stem cell (hiPSC)-based vascular repair, we evaluated two vascular reparative cell populations, CD34+ cells derived from hiPSC (hiPSC-CD34+) and endothelial colony forming cells (ECFCs) derived from hiPSC (iPS-ECFCs), alone and in combination, in a type 2 diabetic (db/db) mouse model of DR. Methods: hiPSC-CD34+ cells (1 × 104) or iPSC- ECFCs (1 × 105) alone or in combination (1.1 × 105) were injected into the vitreous of immunosuppressed db/db mice with six months of established diabetes. One month post-injection, mice underwent electroretinography (ERG) and optical coherence tomography (OCT) to evaluate functional and structural retinal recovery with iPSC administration. Immunohistochemistry (IHC) was used to assess recruitment and incorporation of cells into the retinal vasculature. Retinas from the experimental groups were analyzed using Functional Proteomics via Reverse Phase Protein Array (RPPA). Results: Functional assessment via ERG demonstrated significant improvements in retinal response in the diabetic cohorts treated with either hiPSC-derived CD34+ cells or hiPSC-ECFCs. Retinal thickness, assessed by OCT, was restored to near-nondiabetic levels in mice treated with hiPSC-CD34+ cells alone and the combination group, whereas hiPSC-ECFCs alone did not significantly affect retinal thickness. One month following intravitreal injection, hiPSC-CD34+ cells were localized to perivascular regions, whereas hiPSC-ECFCs were observed to integrate directly into the retinal vasculature. RPPA analysis revealed interaction-significant changes, and this was interpreted as a combination-specific, non-additive host responses (m6A, PI3K–AKT–mTOR, glycolysis, endothelial junction pathways). Conclusions: The studies support that injection of hiPSC-CD34+ cells and hiPSC-ECFCs, both individually and in combination, showed benefit; however, iPSC combination-specific effects were identified by measurement of retinal thickness and by RPPA.Catalog #: Product Name: 17856 EasySep™ Human CD34 Positive Selection Kit II Catalog #: 17856 Product Name: EasySep™ Human CD34 Positive Selection Kit II - ReferenceM. Long et al. (Sep 2025) Scientific Reports 15 4
Detecting MUNC18-1 related presynaptic dysfunction and rescue in human iPSC-derived neurons
Human induced pluripotent stem cell (hiPSC) derived neurons are powerful tools to model disease biology in the drug development space. Here we leveraged a spectrum of neurophysiological tools to characterize iPSC-derived NGN2 neurons. Specifically, we applied these technologies to detect phenotypes associated with presynaptic dysfunction and rescue in NGN2 neurons lacking a synaptic vesicle associated protein MUNC18-1, encoded by syntaxin binding protein 1 gene (STXBP1). STXBP1 homozygous knock out NGN2 neurons lacked miniature post synaptic currents and demonstrated disrupted network bursting as assayed with multielectrode array and calcium imaging. Furthermore, knock out neurons released less glutamate into culture media, consistent with a presynaptic deficit. These synaptic phenotypes were rescued by reconstitution of STXBP1 protein by AAV transduction in a dose-dependent manner. Our results identify a complementary suite of physiological methods suitable to examine the modulation of synaptic transmission in human neurons.Catalog #: Product Name: 100-0276 mTeSR™ Plus Catalog #: 100-0276 Product Name: mTeSR™ Plus - ReferenceO. Sheveleva et al. (Aug 2025) International Journal of Molecular Sciences 26 17
The Generation of iPSCs Expressing Interferon-Beta Under Doxycycline-Inducible Control
Type 1 interferons (IFN-Is) exhibit significant antiviral, antitumor, and immunoregulatory properties, demonstrating substantial therapeutic potential. However, IFN-Is are pleiotropic cytokines, and the available data on their effect under specific pathological conditions are inconclusive. Furthermore, the systemic administration of IFN-Is can result in side effects. Generating cells that can migrate to the pathological focus and provide regulated local production of IFN-Is could overcome this limitation and provide a model for an in-depth analysis of the biological and therapeutic effects of IFN-Is. Induced pluripotent stem cells (iPSCs) are a valuable source of various differentiated cell types, including human immune cells. In this study, we describe the generation of genetically modified human iPSCs with doxycycline-controlled overexpression of interferon β (IFNB1). Three IFNB1-overexpressing iPSC lines (IFNB-iPSCs) and one control line expressing the transactivator M2rtTA (TA-iPSCs) were generated using the CRISPR/Cas9 technology. The pluripotency of the generated cell lines has been confirmed by the following: (i) cell morphology; (ii) the expression of the pluripotency markers OCT4, SOX2, TRA 1-60, and NANOG; and (iii) the ability to spontaneously differentiate into the derivatives of the three germ layers. Upon the addition of doxycycline, all IFNB-iPSCs upregulated IFNB1 expression at RNA (depending on the iPSC line, 126-816-fold) and protein levels. The IFNB-iPSCs and TA-iPSCs generated here represent a valuable cellular model for studying the effects of IFN-β on the activity and differentiation trajectories of different cell types, as well as for generating different types of cells with controllable IFN-β expression.Catalog #: Product Name: 85850 łľ°Ő±đł§¸é™1 Catalog #: 85850 Product Name: łľ°Ő±đł§¸é™1 - ReferenceH. Shin et al. (Aug 2025) PLOS One 20 8
Skin irritation testing using human iPSCs derived 3D skin equivalent model
Artificial skin models have emerged as valuable tools for evaluating cosmetic ingredients and developing treatments for skin regeneration. Among them, 3D skin equivalent models (SKEs) using human primary skin cells are widely utilized and supported by standardized testing guidelines. However, primary cells face limitations such as restricted donor availability and challenges in conducting genotype-specific studies. To overcome these issues, recent approaches have focused on differentiating skin cells from human-induced pluripotent stem cells (hiPSCs). In this study, we developed a protocol to differentiate high-purity skin cells, such as fibroblasts (hFIBROs) and keratinocytes (hKERAs), from hiPSCs. To construct the hiPSC-derived SKE (hiPSC-SKE), a dermis was first formed by culturing a collagen and hFIBROs mixture within an insert. Subsequently, hKERAs were seeded onto the dermis, and keratinization was induced under air-liquid culture conditions to establish an epidermis. Histological analysis with hematoxylin and eosin staining confirmed that the hiPSC-SKE recapitulated the layered architecture of native human skin and expressed appropriate epidermal and dermal markers. Moreover, exposure to Triton X-100, a known skin irritant, led to marked epidermal damage and significantly reduced cell viability, validating the model’s functional responsiveness. These findings indicate that the hiPSC-SKE model represents a promising alternative for various skin-related applications, including the replacement of animal testing.Catalog #: Product Name: 85850 łľ°Ő±đł§¸é™1 Catalog #: 85850 Product Name: łľ°Ő±đł§¸é™1 - Reference(Feb 2024) Inflammation and Regeneration 44 3
Novel artificial nerve transplantation of human iPSC-derived neurite bundles enhanced nerve regeneration after peripheral nerve injury
BackgroundSevere peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected.MethodsUsing a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing.ResultAfter transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system’s role in recovery.ConclusionThe combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.Supplementary InformationThe online version contains supplementary material available at 10.1186/s41232-024-00319-4.Catalog #: Product Name: 17899 EasySep™ Dead Cell Removal (Annexin V) Kit Catalog #: 17899 Product Name: EasySep™ Dead Cell Removal (Annexin V) Kit - Reference(Jun 2025) Cell Reports Medicine 6 7
iPSC-derived trimodal T cells engineered with CAR, TCR, and hnCD16 modalities can overcome antigen escape in heterogeneous tumors
SummaryAlthough chimeric antigen receptor (CAR) T cells have demonstrated therapeutic activity in hematopoietic malignancies, tumor heterogeneity has impeded the efficacy of CAR T cells and their extension into successful solid tumor treatment. To address these challenges, induced pluripotent stem cell (iPSC)-derived T (iT) cells are engineered to uniformly express CAR and T cell receptor (TCR), enabling targeting of both surface and intracellular antigens, respectively, along with a high-affinity, non-cleavable variant of CD16a (hnCD16) to support antibody-dependent cellular cytotoxicity (ADCC) when combined with therapeutic antibodies. Co-expression of each antitumor strategy on engineered iT cells enables independent and antigen-specific targeting across a diverse set of liquid and solid tumors. In heterogeneous tumor models, coactivation of these modalities is required for measurable antitumor efficacy, with activation of all three modalities displaying maximal efficacy. These data highlight the therapeutic potential of an off-the-shelf engineered iPSC-derived trimodal T cell expressing CAR, TCR, and hnCD16 to combat difficult-to-treat heterogeneous tumors. Graphical abstract Highlights•CAR, TCR, and hnCD16 can be uniformly co-expressed and can function in iT cells•hnCD16 signals through CD3ζ and arms iT cells with targeting flexibility through ADCC•Concurring CAR, TCR, and hnCD16 activation demonstrates a cooperative effect•Multi-targeting with trimodal iT cells can control heterogeneous tumors in vivo Yang et al. show that (1) trimodal iPSC cells expressing CAR, TCR, and hnCD16 can commit to T cell lineage, (2) hnCD16 signals through CD3ζ in iT cells and arms iT cells with ADCC targeting flexibility, and (3) trimodal iT cells control antigen-heterogeneous tumors in vivo through multi-modal targeting.Catalog #: Product Name: 18958 EasySep™ Mouse CD90.1 Positive Selection Kit Catalog #: 18958 Product Name: EasySep™ Mouse CD90.1 Positive Selection Kit - Reference(Jul 2024) Stem Cell Research & Therapy 15 1–2
Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage
BackgroundRadiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines.MethodsWe generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit.ResultsIncreasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ? 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NF?B activation, TNF-? release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GRO?/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and ?-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment.ConclusionsThe iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-03847-5.Catalog #: Product Name: 85850 łľ°Ő±đł§¸é™1 Catalog #: 85850 Product Name: łľ°Ő±đł§¸é™1 - Reference(Oct 2024) BMC Psychiatry 24 1
Patient iPSC-derived neural progenitor cells display aberrant cell cycle control, p53, and DNA damage response protein expression in schizophrenia
BackgroundSchizophrenia (SCZ) is a severe psychiatric disorder associated with alterations in early brain development. Details of underlying pathomechanisms remain unclear, despite genome and transcriptome studies providing evidence for aberrant cellular phenotypes and pathway deregulation in developing neuronal cells. However, mechanistic insight at the protein level is limited.MethodsHere, we investigate SCZ-specific protein expression signatures of neuronal progenitor cells (NPC) derived from patient iPSC in comparison to healthy controls using high-throughput Western Blotting (DigiWest) in a targeted proteomics approach.ResultsSCZ neural progenitors displayed altered expression and phosphorylation patterns related to Wnt and MAPK signaling, protein synthesis, cell cycle regulation and DNA damage response. Consistent with impaired cell cycle control, SCZ NPCs also showed accumulation in the G2/M cell phase and reduced differentiation capacity. Furthermore, we correlated these findings with elevated p53 expression and phosphorylation levels in SCZ patient-derived cells, indicating a potential implication of p53 in hampering cell cycle progression and efficient neurodevelopment in SCZ.ConclusionsThrough targeted proteomics we demonstrate that SCZ NPC display coherent mechanistic alterations in regulation of DNA damage response, cell cycle control and p53 expression. These findings highlight the suitability of iPSC-based approaches for modeling psychiatric disorders and contribute to a better understanding of the disease mechanisms underlying SCZ, particularly during early development.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12888-024-06127-x.Catalog #: Product Name: 08581 STEMdiff™ SMADi Neural Induction Kit 100-0276 mTeSR™ Plus 05833 STEMdiff™ Neural Progenitor Medium Catalog #: 08581 Product Name: STEMdiff™ SMADi Neural Induction Kit Catalog #: 100-0276 Product Name: mTeSR™ Plus Catalog #: 05833 Product Name: STEMdiff™ Neural Progenitor Medium - Reference(Mar 2024) Bioactive Materials 36
Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells
Natural killer (NK) cells are cytotoxic immune cells that can eliminate target cells without prior stimulation. Human induced pluripotent stem cells (iPSCs) provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers. In this in vitro study, a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells, and distinct maturational stages of iPSC-NK were characterized. Mature cells of CD56bright CD16bright phenotype showed upregulation of CD56, CD16, and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure, while exposure to aggressive atypical teratoid/rhabdoid tumor (ATRT) cell lines enhanced NKG2D and NKp46 expression. Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-? secretion in activated NK cells. CD56bright CD16bright iPSC-NK cells showed a ratio-dependent killing of ATRT cells, and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT. The iPSC-NK cells were also cytotoxic against other brain, kidney, and lung cancer cell lines. Further NK maturation yielded CD56?ve CD16bright cells, which lacked activation markers even after exposure to interleukins or ATRT cells - indicating diminished cytotoxicity. Generation and characterization of different NK phenotypes from iPSCs, coupled with their promising anti-tumor activity against ATRT in vitro, offer valuable insights into potential immunotherapeutic strategies for brain tumors. Graphical abstractImage 1 Highlights•Natural killer (NK) cells were derived from human induced pluripotent stem cells (iPSCs) in the absence of feeder cells.•Various maturational subtypes of iPSC-NK cells were characterized, and the phenotypic and functional properties were studied.•iPSC-NK cells of CD56bright CD16bright phenotype expressed activation markers in response to interleukin stimuli.•iPSC-NK cells were cytotoxic toward human atypical teratoid and rhabdoid tumor (ATRT) cells and other human cancer cells.•The cytotoxicity of iPSC-NK cells against various cancer cells in vitro might be translated into an in vivo immunotherapy.Catalog #: Product Name: 09600 StemSpan™ SFEM 09605 StemSpan™ SFEM II 100-0276 mTeSR™ Plus 09915 StemSpan™ Lymphoid Progenitor Expansion Supplement (10X) 09950 StemSpan™ NK Cell Differentiation Supplement (100X) 09960 StemSpan™ NK Cell Generation Kit Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09605 Product Name: StemSpan™ SFEM II Catalog #: 100-0276 Product Name: mTeSR™ Plus Catalog #: 09915 Product Name: StemSpan™ Lymphoid Progenitor Expansion Supplement (10X) Catalog #: 09950 Product Name: StemSpan™ NK Cell Differentiation Supplement (100X) Catalog #: 09960 Product Name: StemSpan™ NK Cell Generation Kit
1 Product
Shop By
Filter Results
- Resource Type
-
- Reference 207 items
- Area of Interest
-
- Cancer 2 items
- Cell Line Development 3 items
- Drug Discovery and Toxicity Testing 1 item
- Neuroscience 20 items
- Stem Cell Biology 95 items
- Brand
-
- ALDEFLUOR 1 item
- AggreWell 4 items
- BrainPhys 6 items
- CryoStor 4 items
- EasySep 2 items
- MesenCult 1 item
- MethoCult 1 item
- RSeT 1 item
- STEMdiff 9 items
- TeSR 87 items
- Cell Type
-
- Cancer Cells and Cell Lines 1 item
- Cardiomyocytes, PSC-Derived 1 item
- Hematopoietic Stem and Progenitor Cells 2 items
- Mesenchymal Stem and Progenitor Cells 3 items
- Monocytes 1 item
- Neural Cells, PSC-Derived 4 items
- Neural Stem and Progenitor Cells 15 items
- Neurons 14 items
- Pluripotent Stem Cells 98 items