Showing 25 - 36 of 125 results for "ipsc"
1 Product
- ReferenceA. Wilmes et al. ( 2017) Toxicology in Vitro
Towards optimisation of induced pluripotent cell culture: Extracellular acidification results in growth arrest of iPSC prior to nutrient exhaustion
Human induced pluripotent stem cells (iPSC) have the potential to radically reduce the number of animals used in both toxicological science and disease elucidation. One initial obstacle culturing iPSC is that they require daily medium exchange. This study attempts to clarify why and propose some practical solutions. Two iPSC lineages were fed at different intervals in a full growth area (FGA) or a restricted growth area (RGA). The FGA consisted of a well coated with Matrigelâ„¢ and the RGA consisted of a coated coverslip placed in a well. Glucose, lactate, extracellular pH and cell cycle phases were quantified. Without daily feeding, FGA cultured iPSC had significantly reduced growth rates by day 2 and began to die by day 3. In contrast, RGA cultured cells grew to confluence over 3 days. Surprisingly, glucose was not exhausted under any condition. However, extracellular pH reached 6.8 after 72 h in FGA cultures. Artificially reducing medium pH to 6.8 also inhibited glycolysis and initiated an increase in G0/G1 phase of the cell cycle, while adding an additional 10 mM bicarbonate to the medium increased glycolysis rates. This study demonstrates that iPSC are highly sensitive to extracellular acidification, a likely limiting factor in maintenance of proliferative and pluripotent status. Culturing iPSC in RGA prevents rapid extracellular acidification, while still maintaining pluripotency and allowing longer feeding cycles. - ReferenceJ. S. Saini et al. (MAY 2017) Cell stem cell 20 5 635--647.e7
Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration.
Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE), a cell monolayer essential for photoreceptor survival, and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD, which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD, including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins, and those from the AMD donors show significantly increased complement and inflammatory factors, which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening, combined with transcriptome analysis, we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome, ribosome, and chromatin-modifying genes. Thus, targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 05835 STEMdiffâ„¢ Neural Induction Medium Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 05835 Product Name: STEMdiffâ„¢ Neural Induction Medium - ReferenceD. R. Wakeman et al. ( 2017) Stem cell reports 9 1 149--161
Cryopreservation Maintains Functionality of Human iPSC Dopamine Neurons and Rescues Parkinsonian Phenotypes In Vivo.
A major challenge for clinical application of pluripotent stem cell therapy for Parkinson's disease (PD) is large-scale manufacturing and cryopreservation of neurons that can be efficiently prepared with minimal manipulation. To address this obstacle, midbrain dopamine neurons were derived from human induced pluripotent stem cells (iPSC-mDA) and cryopreserved in large production lots for biochemical and transplantation studies. Cryopreserved, post-mitotic iPSC-mDA neurons retained high viability with gene, protein, and electrophysiological signatures consistent with midbrain floor-plate lineage. To test therapeutic efficacy, cryopreserved iPSC-mDA neurons were transplanted without subculturing into the 6-OHDA-lesioned rat and MPTP-lesioned non-human-primate models of PD. Grafted neurons retained midbrain lineage with extensive fiber innervation in both rodents and monkeys. Behavioral assessment in 6-OHDA-lesioned rats demonstrated significant reversal in functional deficits up to 6 months post transplantation with reinnervation of the host striatum and no aberrant growth, supporting the translational development of pluripotent cell-based therapies in PD. - ReferenceA. M. Tukker et al. (JUL 2018) Neurotoxicology 67 215--225
Human iPSC-derived neuronal models for in vitro neurotoxicity assessment.
Neurotoxicity testing still relies on ethically debated, expensive and time consuming in vivo experiments, which are unsuitable for high-throughput toxicity screening. There is thus a clear need for a rapid in vitro screening strategy that is preferably based on human-derived neurons to circumvent interspecies translation. Recent availability of commercially obtainable human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes holds great promise in assisting the transition from the current standard of rat primary cortical cultures to an animal-free alternative. We therefore composed several hiPSC-derived neuronal models with different ratios of excitatory and inhibitory neurons in the presence or absence of astrocytes. Using immunofluorescent stainings and multi-well micro-electrode array (mwMEA) recordings we demonstrate that these models form functional neuronal networks that become spontaneously active. The differences in development of spontaneous neuronal activity and bursting behavior as well as spiking patterns between our models confirm the importance of the presence of astrocytes. Preliminary neurotoxicity assessment demonstrates that these cultures can be modulated with known seizurogenic compounds, such as picrotoxin (PTX) and endosulfan, and the neurotoxicant methylmercury (MeHg). However, the chemical-induced effects on different parameters for neuronal activity, such as mean spike rate (MSR) and mean burst rate (MBR), may depend on the ratio of inhibitory and excitatory neurons. Our results thus indicate that hiPSC-derived neuronal models must be carefully designed and characterized prior to large-scale use in neurotoxicity screening.Catalog #: Product Name: 05790 BrainPhysâ„¢ Neuronal Medium 05792 BrainPhysâ„¢ Neuronal Medium and SM1 Kit 05794 BrainPhysâ„¢ Primary Neuron Kit 05795 BrainPhysâ„¢ hPSC Neuron Kit 05793 BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium Catalog #: 05792 Product Name: BrainPhysâ„¢ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhysâ„¢ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhysâ„¢ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit - ReferenceS. B. Ross et al. ( 2017) Stem cell research 20 88--90
Generation of induced pluripotent stem cells (iPSCs) from a hypertrophic cardiomyopathy patient with the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7) gene.
Induced pluripotent stem cells (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) isolated from the whole blood of a 43-year-old male with hypertrophic cardiomyopathy (HCM) who carries the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7). Patient-derived PBMCs were reprogrammed using non-integrative episomal vectors containing reprogramming factors OCT4, SOX2, LIN28, KLF4 and L-MYC. iPSCs were shown to express pluripotent markers, have trilineage differentiation potential, carry the pathogenic MYH7 variant p.Val698Ala, have a normal karyotype and no longer carry the episomal reprogramming vector. This line is useful for studying the link between variants in MYH7 and the pathogenesis of HCM.Catalog #: Product Name: 09605 StemSpan™ SFEM II 07930 CryoStor® CS10 85415 SepMate™-15 (IVD) 05230 STEMdiff™ Trilineage Differentiation Kit 02692 StemSpan™ Erythroid Expansion Supplement (100X) Catalog #: 09605 Product Name: StemSpan™ SFEM II Catalog #: 07930 Product Name: CryoStor® CS10 Catalog #: 85415 Product Name: SepMate™-15 (IVD) Catalog #: 05230 Product Name: STEMdiff™ Trilineage Differentiation Kit Catalog #: 02692 Product Name: StemSpan™ Erythroid Expansion Supplement (100X) - ReferenceS. B. Ross et al. ( 2017) Stem cell research 20 76--79
Peripheral blood derived induced pluripotent stem cells (iPSCs) from a female with familial hypertrophic cardiomyopathy.
Induced pluripotent stem cells (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) obtained from a 62-year-old female with familial hypertrophic cardiomyopathy (HCM). PBMCs were reprogrammed to a pluripotent state following transfection with non-integrative episomal vectors carrying reprogramming factors OCT4, SOX2, LIN28, KLF4 and L-MYC. iPSCs were shown to express pluripotency markers, possess trilineage differentiation potential, carry rare variants identified in DNA isolated directly from the patient's whole blood, have a normal karyotype and no longer carry episomal vectors for reprogramming. This line is a useful resource for identifying unknown genetic causes of HCM.Catalog #: Product Name: 09605 StemSpanâ„¢ SFEM II 07930 CryoStor® CS10 85415 SepMateâ„¢-15 (IVD) 05230 STEMdiffâ„¢ Trilineage Differentiation Kit 02692 StemSpanâ„¢ Erythroid Expansion Supplement (100X) 05990 °Õ±ð³§¸éâ„¢-·¡8â„¢ Catalog #: 09605 Product Name: StemSpanâ„¢ SFEM II Catalog #: 07930 Product Name: CryoStor® CS10 Catalog #: 85415 Product Name: SepMateâ„¢-15 (IVD) Catalog #: 05230 Product Name: STEMdiffâ„¢ Trilineage Differentiation Kit Catalog #: 02692 Product Name: StemSpanâ„¢ Erythroid Expansion Supplement (100X) Catalog #: 05990 Product Name: °Õ±ð³§¸éâ„¢-·¡8â„¢ - ReferenceU. Rajamani et al. (MAY 2018) Cell stem cell 22 5 698--712.e9
Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and Hormone Responses.
The hypothalamus contains neurons that integrate hunger and satiety endocrine signals from the periphery and are implicated in the pathophysiology of obesity. The limited availability of human hypothalamic neurons hampers our understanding of obesity disease mechanisms. To address this, we generated human induced pluripotent stem cells (hiPSCs) from multiple normal body mass index (BMI; BMI ≤ 25) subjects and super-obese (OBS) donors (BMI ≥ 50) with polygenic coding variants in obesity-associated genes. We developed a method to reliably differentiate hiPSCs into hypothalamic-like neurons (iHTNs) capable of secreting orexigenic and anorexigenic neuropeptides. Transcriptomic profiling revealed that, although iHTNs maintain a fetal identity, they respond appropriately to metabolic hormones ghrelin and leptin. Notably, OBS iHTNs retained disease signatures and phenotypes of high BMI, exhibiting dysregulated respiratory function, ghrelin-leptin signaling, axonal guidance, glutamate receptors, and endoplasmic reticulum (ER) stress pathways. Thus, human iHTNs provide a powerful platform to study obesity and gene-environment interactions.Catalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 - ReferenceC. L. Moreno et al. ( 2018) Molecular neurodegeneration 13 1 33
iPSC-derived familial Alzheimer's PSEN2 N141I cholinergic neurons exhibit mutation-dependent molecular pathology corrected by insulin signaling.
BACKGROUND Type 2 diabetes (T2D) is a recognized risk factor for the development of cognitive impairment (CI) and/or dementia, although the exact nature of the molecular pathology of T2D-associated CI remains obscure. One link between T2D and CI might involve decreased insulin signaling in brain and/or neurons in either animal or postmortem human brains as has been reported as a feature of Alzheimer's disease (AD). Here we asked if neuronal insulin resistance is a cell autonomous phenomenon in a familial form of AD. METHODS We have applied a newly developed protocol for deriving human basal forebrain cholinergic neurons (BFCN) from skin fibroblasts via induced pluripotent stem cell (iPSC) technology. We generated wildtype and familial AD mutant PSEN2 N141I (presenilin 2) BFCNs and assessed if insulin signaling, insulin regulation of the major AD proteins Abeta$ and/or tau, and/or calcium fluxes is altered by the PSEN2 N141I mutation. RESULTS We report herein that wildtype, PSEN2 N141I and CRISPR/Cas9-corrected iPSC-derived BFCNs (and their precursors) show indistinguishable insulin signaling profiles as determined by the phosphorylation of canonical insulin signaling pathway molecules. Chronic insulin treatment of BFCNs of all genotypes led to a reduction in the Abeta$42/40 ratio. Unexpectedly, we found a CRISPR/Cas9-correctable effect of PSEN2 N141I on calcium flux, which could be prevented by chronic exposure of BFCNs to insulin. CONCLUSIONS Our studies indicate that the familial AD mutation PSEN2 N141I does not induce neuronal insulin resistance in a cell autonomous fashion. The ability of insulin to correct calcium fluxes and to lower Abeta$42/40 ratio suggests that insulin acts to oppose an AD-pathophysiology. Hence, our results are consistent with a potential physiological role for insulin as a mediator of resilience by counteracting specific metabolic and molecular features of AD.Catalog #: Product Name: 85850 ³¾°Õ±ð³§¸éâ„¢1 07920 ´¡°ä°ä±«°Õ´¡³§·¡â„¢ 05791 BrainPhysâ„¢ Without Phenol Red 05790 BrainPhysâ„¢ Neuronal Medium 05792 BrainPhysâ„¢ Neuronal Medium and SM1 Kit 05794 BrainPhysâ„¢ Primary Neuron Kit 05795 BrainPhysâ„¢ hPSC Neuron Kit 05793 BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 07920 Product Name: ´¡°ä°ä±«°Õ´¡³§·¡â„¢ Catalog #: 05791 Product Name: BrainPhysâ„¢ Without Phenol Red Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium Catalog #: 05792 Product Name: BrainPhysâ„¢ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhysâ„¢ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhysâ„¢ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit - ReferenceBurbulla LF et al. (AUG 2016) Advanced Healthcare Materials 5 15 1894--1903
Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks
The discovery of induced pluripotent stem cells (iPSCs) and their application to patient-specific disease models offers new opportunities for studying the pathophysiology of neurological disorders. However, current methods for culturing iPSC-derived neuronal cells result in clustering of neurons, which precludes the analysis of individual neurons and defined neuronal networks. To address this challenge, cultures of human neurons on micropatterned surfaces are developed that promote neuronal survival over extended periods of time. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and specific network connections. Importantly, micropatterns support the long-term stability of cultured neurons, which enables time-dependent analysis of cellular processes in living neurons. The approach described in this paper allows mechanistic studies of human neurons, both in terms of normal neuronal development and function, as well as time-dependent pathological processes, and provides a platform for testing of new therapeutics in neuropsychiatric disorders.Catalog #: Product Name: 05711 NeuroCultâ„¢ SM1 Neuronal Supplement Catalog #: 05711 Product Name: NeuroCultâ„¢ SM1 Neuronal Supplement - ReferenceBershteyn M et al. (APR 2017) Cell stem cell 20 4 435--449.e4
Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia.
Classical lissencephaly is a genetic neurological disorder associated with mental retardation and intractable epilepsy, and Miller-Dieker syndrome (MDS) is the most severe form of the disease. In this study, to investigate the effects of MDS on human progenitor subtypes that control neuronal output and influence brain topology, we analyzed cerebral organoids derived from control and MDS-induced pluripotent stem cells (iPSCs) using time-lapse imaging, immunostaining, and single-cell RNA sequencing. We saw a cell migration defect that was rescued when we corrected the MDS causative chromosomal deletion and severe apoptosis of the founder neuroepithelial stem cells, accompanied by increased horizontal cell divisions. We also identified a mitotic defect in outer radial glia, a progenitor subtype that is largely absent from lissencephalic rodents but critical for human neocortical expansion. Our study, therefore, deepens our understanding of MDS cellular pathogenesis and highlights the broad utility of cerebral organoids for modeling human neurodevelopmental disorders.Catalog #: Product Name: 05872 ¸é±ð³¢±ð³§¸éâ„¢ 85850 ³¾°Õ±ð³§¸éâ„¢1 07920 ´¡°ä°ä±«°Õ´¡³§·¡â„¢ Catalog #: 05872 Product Name: ¸é±ð³¢±ð³§¸éâ„¢ Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 07920 Product Name: ´¡°ä°ä±«°Õ´¡³§·¡â„¢ - ReferenceRajasingh S et al. (AUG 2015) PloS one 10 8 e0134093
Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility.
Human induced pluripotent stem cells (iPSCs) derived cardiomyocytes (iCMCs) would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV) analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with<88% of cells being positive for troponin T (CTT) and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs.Catalog #: Product Name: 05835 STEMdiffâ„¢ Neural Induction Medium 05832 STEMdiffâ„¢ Neural Rosette Selection Reagent 05833 STEMdiffâ„¢ Neural Progenitor Medium Catalog #: 05835 Product Name: STEMdiffâ„¢ Neural Induction Medium Catalog #: 05832 Product Name: STEMdiffâ„¢ Neural Rosette Selection Reagent Catalog #: 05833 Product Name: STEMdiffâ„¢ Neural Progenitor Medium - ReferenceM. Ortiz-Virumbrales et al. (dec 2017) Acta neuropathologica communications 5 1 77
CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer's PSEN2 N141I neurons.
Basal forebrain cholinergic neurons (BFCNs) are believed to be one of the first cell types to be affected in all forms of AD, and their dysfunction is clinically correlated with impaired short-term memory formation and retrieval. We present an optimized in vitro protocol to generate human BFCNs from iPSCs, using cell lines from presenilin 2 (PSEN2) mutation carriers and controls. As expected, cell lines harboring the PSEN2 N141I mutation displayed an increase in the A$\beta$42/40 in iPSC-derived BFCNs. Neurons derived from PSEN2 N141I lines generated fewer maximum number of spikes in response to a square depolarizing current injection. The height of the first action potential at rheobase current injection was also significantly decreased in PSEN2 N141I BFCNs. CRISPR/Cas9 correction of the PSEN2 point mutation abolished the electrophysiological deficit, restoring both the maximal number of spikes and spike height to the levels recorded in controls. Increased A$\beta$42/40 was also normalized following CRISPR/Cas-mediated correction of the PSEN2 N141I mutation. The genome editing data confirms the robust consistency of mutation-related changes in A$\beta$42/40 ratio while also showing a PSEN2-mutation-related alteration in electrophysiology.Catalog #: Product Name: 17854 EasySepâ„¢ Human CD19 Positive Selection Kit II 17858 EasySepâ„¢ Human CD14 Positive Selection Kit II 17952 EasySepâ„¢ Human CD4+ T Cell Isolation Kit 85850 ³¾°Õ±ð³§¸éâ„¢1 17877 EasySepâ„¢ Human CD138 Positive Selection Kit II 17856 EasySepâ„¢ Human CD34 Positive Selection Kit II 17754 EasySepâ„¢ Release Human CD19 Positive Selection Kit 17861 EasySepâ„¢ Human Pan-CD25 Positive Selection and Depletion Kit 05790 BrainPhysâ„¢ Neuronal Medium 05792 BrainPhysâ„¢ Neuronal Medium and SM1 Kit 05794 BrainPhysâ„¢ Primary Neuron Kit 05795 BrainPhysâ„¢ hPSC Neuron Kit 05793 BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit Catalog #: 17854 Product Name: EasySepâ„¢ Human CD19 Positive Selection Kit II Catalog #: 17858 Product Name: EasySepâ„¢ Human CD14 Positive Selection Kit II Catalog #: 17952 Product Name: EasySepâ„¢ Human CD4+ T Cell Isolation Kit Catalog #: 85850 Product Name: ³¾°Õ±ð³§¸éâ„¢1 Catalog #: 17877 Product Name: EasySepâ„¢ Human CD138 Positive Selection Kit II Catalog #: 17856 Product Name: EasySepâ„¢ Human CD34 Positive Selection Kit II Catalog #: 17754 Product Name: EasySepâ„¢ Release Human CD19 Positive Selection Kit Catalog #: 17861 Product Name: EasySepâ„¢ Human Pan-CD25 Positive Selection and Depletion Kit Catalog #: 05790 Product Name: BrainPhysâ„¢ Neuronal Medium Catalog #: 05792 Product Name: BrainPhysâ„¢ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhysâ„¢ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhysâ„¢ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhysâ„¢ Neuronal Medium N2-A & SM1 Kit
1 Product
Shop By
Filter Results
- Resource Type
-
- Reference 125 items
- Area of Interest
-
- Cancer 2 items
- Cell Line Development 3 items
- Drug Discovery and Toxicity Testing 1 item
- Neuroscience 20 items
- Stem Cell Biology 95 items
- Brand
-
- ALDEFLUOR 1 item
- AggreWell 4 items
- BrainPhys 6 items
- CryoStor 4 items
- EasySep 2 items
- MesenCult 1 item
- MethoCult 2 items
- RSeT 1 item
- STEMdiff 13 items
- SepMate 2 items
- StemSpan 3 items
- TeSR 99 items
- mFreSR 1 item
- Cell Type
-
- Cancer Cells and Cell Lines 1 item
- Cardiomyocytes, PSC-Derived 1 item
- Hematopoietic Stem and Progenitor Cells 2 items
- Mesenchymal Stem and Progenitor Cells 3 items
- Monocytes 1 item
- Neural Cells, PSC-Derived 4 items
- Neural Stem and Progenitor Cells 15 items
- Neurons 14 items
- Pluripotent Stem Cells 98 items